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Abstract. By exact computer enumeration and combinatorial methods, we have calculated the
designability of proteins in a simple lattice hydrophobic-polar model for the protein folding
problem. We show that if the strength of the non-additive part of the interaction potential
becomes larger than a critical value, the degree of designability of structures will depend on the
parameters of the potential. We also show that the existence of a unique ground state is highly
sensitive to mutation in certain sites.

1. Introduction

Biologically active proteins fold into a native compact structure despite the huge number
of possible configurations [1]. Although the mechanism of protein folding is not fully
understood, it has been known since the refolding experiments of Anfinsenet al [2] that
globular proteins fold in the absence of any catalytic biomolecules. From this fact, it has
been established that for proteins, the three-dimensional folded structure is the minimum
free energy structure, and, the information coded in the amino-acid sequence is sufficient
to determine the native structure [3]. The compactness of this unique native state is largely
due to the existence of an optimal amount of hydrophobic amino-acid residues [4], since
these biological objects are usually designed to work in water [5]. The relation between the
primary one-dimensional sequence and the final compact three-dimensional structure is the
task of the protein folding problem.

In addition to the paradoxical problem of kinetics and timescale of the folding process
[6], there is another mystery. If proteins are made randomly by amino acids, the number of
all possible such proteins with typical length of 100, is far larger than the number of proteins
which do actually occur in nature. One hypothesis is that the naturally selected sequences
are special because they are coded for structures that have unique and stable native states,
allowing for easy folding. Thus, a central question of protein evolution is how a mutational
change in the amino acid sequence leads to changes in the structure and stability.

Some efforts have been made in order to study the stability of proteins against mutation
by searching the two-dimensional configuration space [7, 8]. One simple model used in these
studies is the H–P model [9]. In this model there are only two types of chain monomers,
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hydrophobic (H) and polar (P). Every H–H contact between topological neighbours is
assigned a negative contact energy, and other contact interactions are set to zero.

Recently, Li et al [10], looked at this problem in three dimensions. Calculating the
energy of all possible 27-mers in all compact three-dimensional configurations, they found
that there are a few structures into which a high number of sequences uniquely fold. These
structures were named ‘highly designable’ and the number of sequences which fold into
each state was named its ‘designability. In their H–P model, they choose the contact
energy between H and P monomers by some physical arguments [10, 11]. Other significant
points of their work are that (a) only a few per cent of sequences have a unique ground
state and (b) there is a jump in energy gap between highly designable and less designable
structures. Thus, the highly designable structures are more stable against mutation and
thermal fluctuation.

Dill and Chan [12] argued that many of the phenomena observed in proteins can
adequately be understood in terms of the H–P model, but according to the work of Pande
et al [13] the designability of a conformation does depend on the nature of interactions
between monomers. Maybe any interaction leads to some highly designable structures, but
different interactions yield different patterns [14].

In the first part of our work we study this problem for an additive potential. We will show
that there are some highly designable structures for this potential, but the low designable
structures will disappear because of degeneracy of ground state. We will show that there
is a ladder structure for energy levels for this form of potential. We then contribute a non-
additive part to the energy, then the ground-state degeneracy of low-designable structures
will be removed. We show that there is a critical value for non-additive part of potential,
where below the critical value the patterns of highly designable structures are fixed, but
above the critical value the designability of structures is sensitive to the value of non-additive
part of the potential. We have published a brief report of exact enumeration results of this
problem [15], which are mentioned in sections 2, 3 and 5. The additive form of potential
enables us to solve some parts of problem analyticaly. Due to this form of potential and the
simple geometry of the model, in section 4 we will show that by combinatorial approach
we can find the number and patterns of sequences which are folded to a certian compact
configuration uniquely. It also shows that the sequences which fold to highly designable
structure are sensitive to mutation of certain sites. Following this calculation we give an
interval for critical value of non-additive part of potential in section 6.

2. The model

We consider a H–P lattice model [9]. In this model only non-sequential nearest neighbours
interact. Because the native structures of proteins are compact with the H-type monomers
sitting in the core, the effective potentials which are usually used, all of the forces
are attractive (negative values for potential) and the strength of the force between H–H
monomers is greater than others. We can write the general form of the potential in an
arbitrary energy scale as:

EPP= 0 EHP = −1 EHH = −2− γ. (1)

Where γ gives the energy change due to the mixing of two types of amino acids [16].
The most usual choice of H–P model potential corresponds to the limitγ � 1 [7–9, 12],
however, physical arguments are consistent with a smaller value forγ , for instanceγ = 0.3
was used by Liet al [10]. They have calculated the energy of all 227 sequences in 103 346
compact configurations for a 27-sites cube, by a huge enumeration. In particular, it has been
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suggested that for a random mixing of hydrophobic-polar chain it is reasonable to assume
γ is zero [11, 16].

In the caseγ = 0, we have an additive potential. If we let H= −1, and P= 0, we can
rewrite the potential in the form,

Eσiσj = σi + σj . (2)

Following Li et al [10], we consider only compact structures of sequences with length
27, occupying all the sites of a 3×3×3 cube [17]. There are 103 346 compact configurations
which are not related to each other by rotation and reflection symmetries. Let us call the
set of all compact structures, the structure space.

A protein of lengthN may be shown by anN -component vector

|σ 〉 = |σi1, σi2, . . . , σiN 〉 (3)

wherein = 1, 2 refers to P and H residues. Thus the number of suchN -component vectors
for proteins with length 27 is 227. Let us call the set of|σ 〉, the sequence space.

Because of the additive form of the potential, we can write the energy of a given|σ 〉
in any spatial configuration as,

E =
27∑
i=1

giσi (4)

where gi ’s are the number of non-sequential neighbours of theith monomer, or by
introducing the neighbourhood vector|G〉,

E = 〈σ |G〉. (5)

The vector|G〉 has 27 components and at itsith component, it has the number of
neighbours of theith monomer in the structure. Due to the shape of|G〉 the type of
neighbours is not relevant and all we have to do is count the non-sequential neighbours.
This gives us an additional symmetry for the energy that is different from spatial symmetries.
For example any of the sites in a two-dimensional 5×5 square for two spatial configurations
which are shown in figures 1(a) and (b), have equal number of neighbours, but the labels
of their neighbours are not the same. Visualization of the same effect in three dimensions
is a bit harder, but it does exist.

The space of all three-dimensional structures has 103 346 members for all compact
fulfilled structures in a 3×3×3 cube. Due to this additional symmetry this space is divided
into 6291 subspaces, where all members of each subspace have the same|G〉. Let the
number of members of a subspace be,Nd . The range ofNd is from 1 to 96. Figure 2
shows that the frequency of large values ofNd , is low. Interestingly there are many|G〉’s
which only point to one structure. We have calculated the energy of all 227 |σ 〉 on all |G〉.
We find the degeneracy of ground state in the space of|G〉’s. One can see the distribution
of a number of ground-state degeneraciesg, for all 227 sequences in figure 3. There are only
a few sequences in which their energy is minimized in a|G〉 uniquely, and this corresponds
to the 8.47% of sequences atg = 1. If the energy of one sequence is minimized in a
|G〉 with Nd greater than 1 it has degenerate ground state. According to the definition of
designability, such sequences should not be considered. The distribution ofNs is presented
for γ = 0 in figure 4. Comparing this figure with figure 2 of Liet al [10], we observe that
there is no similarity. This suggests that designability (Ns), is sensitive to the value ofγ ,
which is γ = 0 in our work, whereas Liet al choseγ = 0.3. However as we shall see
later, the fact that atγ = 0, we have the additive potential plays an important role. In fact
a small value ofγ radically changes the picture.
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(a) (b)

Figure 1. The number of neighbours for corresponding sites in these two configurations are the
same, but the neighbours are not, for instance, site 18 in (a) is the neighbour of 5, but they are
not adjacent in (b).
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Figure 2. Histogram ofNd for members of structure space. It is interesting that there are some
G sets withNd = 1.

If we consider all of the sequences which have non-degenerate ground state in space of
|G〉’s, we get a new picture for designability. This means that we calculate the designability
of all |G〉’s, and not only those withNd = 1. This is in contrast toNs which had only
Nd = 1. To recognize this difference, we show the designability of|G〉’s, by N ′s . Figure 5
shows the distribution ofN ′s . Many of points in figure 5 are related to some|G〉’s with
Nd 6= 1. We shall use this picture to express the nature of the energy gap in the caseγ 6= 0
in section 5.
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Figure 3. Histogram of degeneracy of ground state. The sequences which have non-degenerate
ground state, correspond only tog = 1, in this diagram.
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Figure 4. Histogram ofNs for additive potential.

In our enumeration we have calculated the energy of any sequence in all 6291|G〉’s,
but in figure 5 we show the results for 3153|G〉’s which are not related to each other
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Figure 5. Histogram ofN ′s for additive potential. Note that many of the points in this diagram
correspond to some|G〉’s which point to more than one spatial configuration.

by reverse labelling. We cannot reduce the structure space according to this symmetry
before enumeration. Reverse labelling for a non-symmetric sequence gives two different
configurations which may have different energies.

3. Energy levels

The number of non-sequential neighbours is related to type of site. A 3× 3 × 3 cube
has eight corner sites(C), 12 link sites(L), six face sites(F ), and one centre site(O)
(figure 6). C sites have three neighbours, where two of them are connected by sequential
links and there is only one non-sequential neighbour. SimilarlyL, F andO sites have 2,
3 and 4 non-sequential neighbours respectively. We must add 1 to these numbers for two
ends of chain. This sites are divided in two classes,{C,F } and{L,O}. In a self-avoiding
walk in this cube, we must jump in any step from one set to other. The first set has 14
members and the second has 13. Thus a walk passes throughC andF sites in odd steps,
and throughL andO sites in even steps. In other words, the odd components of|G〉 are 1
or 3, and even components are 2 or 4, (except the 1st and 27th components which are like
even components). Thus,

|G〉 = |g1, . . . , g27〉 (6)
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Figure 6. A 3 × 3× 3 cube has eight corner sites, 12 link sites, six face sites and one centre
site.

where,

gi =
{

1, 3 odd i’s

2, 4 eveni’s.
(7)

Therefore the energy for a sequenceσα in a structureGµ is

Eαµ = 〈σα|Gµ〉
=
∑
i∈odd

(gµi − 1)σαi +
∑
i∈even

(gµi − 2)σαi +
∑
i∈odd

σαi + 2
∑
i∈even

σαi. (8)

By introducing the new binary variablex the above can be rewritten as

Eαµ =
27∑
i=1

2xµiσαi +
∑
i∈odd

σαi + 2
∑
i∈even

σαi (9)

where,

xi =
{

0 gi = 1 or 2

1 gi = 3 or 4.
(10)

The last two terms in equation (9) are independent of|X〉 or |G〉, thus they result in
a constant, which can be ignored when comparing energies of a sequence in different
configurations. The first term in equation (9) is an integer times two, thus it results in a
ladder energy spectrum with gaps of 2. Therefore the energy gap for all of structures is the
same, and there is no difference between low- and high-designable structures. Of course it
is possible that energy gap would be a muliple of 2, but our enumeration shows that in this
model it does not occur. However, the reason might be seen by the combinatorial approach
which will be introduced in the next section, but we have not a proof for larger polymers.

4. Combinatorial approach

Our aim is to find theN ′s for any spatial configuration, determined by a vector|G〉. Because
|X〉 has a simpler structure, than|G〉, we shall use|X〉 instead of|G〉. Any vector|X〉, has
seven 1’s and twenty 0’s. One of the 1’s is in the even sites, and the others are in odd sites.
Energy could be calculated by performing a ‘logical and’ of two binary numbers (|σ 〉 and
|X〉). For example, a typical|G〉 is,
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G.
4 1 3 3 1 1 1 1 3 1 3 1 3 2

2 2 4 2 2 2 2 2 2 2 2 2 2

To recognize odd and even components of the vectors, we show them in the above form,
writing the even sites below. The vector|X〉 corresponding to the above|G〉 is,

X.
1 0 1 1 0 0 0 0 1 0 1 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0

On the other hand|σ 〉’s have a similar form:

σ .
H 0 H H H 0 0 H 0 H H 0 H H

0 H 0 H 0 0 H H H 0 0 0 H

Where we show P monomers by numerical equivalence of them. Recall that numeric
equivalence for H monomers is−1. Energy of any sequence in any spatial configuration
is calculated by inner product of its|σ 〉 to corresponding|X〉. For the above|σ 〉 and |X〉
the energy is 5H. This value is related to exact value of energy according to equation (9)
by a factor of 2 and two sequence-dependent additional terms, since we are interested in
the ground state and the energy gap of a sequence, the sequence-dependent term may be
ignored, as the structure determines these quantities alone.

By construction any|X〉 has six 1’s in odd sites, and one 1 in even sites. If we do not
consider any other constraint for|X〉, we obtain an upper limit for number of|X〉’s.

n =
(

14

6

)
×
(

13

1

)
= 39 039. (11)

This is far larger than the number of possible|X〉’s which we have obtained by enumeration,
that is 6291. The fact that all 39 039 possible configuration do not exist points to extra
constraints which are yet to be discussed. If all 39 039 of|X〉’s were to exist each of them
would have to be a unique ground state of only one sequence, thus removing all interest!
To see this, it is enough to insert an H into|X〉 wherever one finds a 1, and P for zeros.
Indeed the absence of some of these vectors in the real world makes some of the other more
preferable in nature.

The connectivity of a self-avoiding walk, further constraints the|X〉. For example to
pass through the centre site, the walk has to pass through two face sites. This means that
only 1 (corresponding to the centre site) in even sites must be sandwiched between two 1’s
in odd sites (face sites). This constraint reduces the number of possible|X〉’s. Two 1’s in
odd sites are fixed by even 1, and only 12 sites remain for four other 1’s. Then there are,

n =
(

12

4

)
×
(

13

1

)
= 6435 (12)

vectors. This number is still larger than exact number of|X〉’s by 144. Although due to
our enumeration we know these 144 vectors, we cannot find the complex constraints which
prune them out, and we shall continue our calculation as though these 144 vectors were
correct. Of course the values are different from exact enumeration, however it can be seen
that this difference is not too large, and it may be considered as an approximation to the
exact solution. Also we aid a computer enumeration including the extra 144 vectors and
compared the results with the combinatorial calculation. This has served as a check on our
code.

We now proceed to calculateN ′s for the following example:
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X0.
1 0 1 1 1 0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0

First let us introduce some new parameters and notations. We will show the energy of
a |σ 〉 in an |X〉 as:

E = E(a, b, c) = (a + b + c)H (13)

wherea, b andc are related to energy parts which come from centre (1 in lower row), faces
which are connected to centre, and energy of other parts, respectively. For example energy
of following |σ 〉:

σ
H 0 H H 0 H 0 0 H H 0 0 H H

0 H 0 0 H H H 0 H 0 0 H 0

in |X0〉, is E(0, 2, 3) = 5H.
Besides, we name the number of pairs of 1’s in the upper row of|X〉 as z and the

number of 1’s in two ends of vectors asy. For |X0〉, z = 2, andy = 1.
Now we try to count the number of all polymers which have their energy minimized in

|X0〉 and, there is no other|X〉 with energy equal to the ground state for them. To do this
we discuss all possible cases.

4.1. Case (i): E(1,2,4)

Such polymers have at least seven H sites corresponding to 1’s ofX0. These polymers have
minimum possible energy, thusX0 is a minimum energy configuration for them. However,
it must be checked whether it is a unique ground state or not. First consider polymers which
in addition to these seven H’s have another H monomer in their upper row sites,

σ1.
H 0 H H H 0 0 0 H 0 H 0 H 0

0 0 H 0 0 0 0 0 0 0 0 0 0

The energy of this sequence in following|X〉 is also 7H.

X1.
1 0 1 1 1 0 0 0 1 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

Then the ground state of polymers which have additional H monomers in corresponding
to upper row 0’s ofX0, is degenerate, and they do not count inN ′s of X0. The above
discussion is independent of value ofa and b in E(a, b,4), and degrees of freedom to
choose sites for H monomers is limited to lower row sites.

For the|X〉 with z 6= 1 (like X0) polymers cannot have H monomers in the lower sites
between two upper row 1’s. For example, the following sequence,
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σ2
H 0 H H H 0 0 0 H 0 0 0 H 0

0 0 H H 0 0 0 0 0 0 0 0 0

has energy 7H in the following|X〉 too

X2.
1 0 1 1 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0

Then the contribution of polymers withE(1, 2, 4) in N ′s is:

N ′s(i) = 212−(z−1) = 213−z. (14)

4.2. Case (ii ): E(0,2,4)

In this case ifz > 1 (such asX0) the ground state is degenerate. It can be seen that
any sequence with energyE = (0, 2, 4) in X0 state has the same energy inX2 state. In
the casez = 1, only the sites in lower row by condition that they are not a neighbour
of corresponding upper 1’s ofX, have freedom to be an H or P monomer. There are
2× 6− z− y sites which do not have this freedom in the lower row. Then,

N ′s(ii) =
{

22+y z = 1

0 z > 1.
(15)

4.3. Case (iii ): E(1,0,4)

In this case there is only one sequence with a non-degenerate ground state. For our example,
X0, this sequence is,

σ3.
H 0 0 0 H 0 0 0 H 0 0 0 H 0

0 0 H 0 0 0 0 0 0 0 0 0 0

In the above sequence changing any P monomer to H type, will cause the ground state
to becomes degenerate. Then,

N ′s(iii ) = 1. (16)

4.4. Case (iv): E(1,1,4)

For this caseb is 1, and if this 1 comes from right or left neighbour of lower 1, it has
different solutions. Then we introduce new parameters (zR, yR) and (zL, yL), which are
similar to oldz andy, when right or left neighbour 1 of lower 1 will be omitted. ForX0

we havezR = 0, zL = 1 andyR = yL = y = 1. By introducing this new parameters this
case is very similar to case (ii ), and the difference comes from number of corresponding
1’s in upper row (five instead six), and no restriction in value ofz. Then,

N ′s(iv) = 23+zR+yR + 23+zL+yL . (17)
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4.5. Case (v): Other cases

All of the other cases for ground-state energy are degenerate, and need not be considered.
With this analysis it is possible to findN ′s for any |X〉. For ourX0 example it is,

N ′s(i) = 211

N ′s(ii) = 0

N ′s(iii ) = 1

N ′s(iv) = 24+ 25

that gives,

N ′s(X0) = 2097.

By this calculation all of the values ofN ′s ’s can be calculated. In addition to the
number of sequences which have a unique ground state, in this way monomer coding of
these sequences is known. Had the 144 additional structures been taken out, the calculation
of N ′s for the problem would correspond to enumeration exactly. However, taking these
structures out is too complex and would have to be done case by case. Besides the value
of N ′s , this calculation shows that the sequences with non-degenerate ground state have
between 4 and 6 H-type monomers in face sites and none in corner sites. Indeed in our
model the stability of polymers is very sensitive to mutation in corner sites.

5. Non-additive potentials

In the caseγ 6= 0 the potential is non-additive. In this case we can write the energy ofαth
sequence inµth spatial configuration as:

Eαµ = 〈σα|Gµ〉 − 1
2γ 〈σα|Mµ|σα〉 (18)

whereσ andG are the sequence and neighbourhood vectors, that introduced in previous
sections.M is the adjacency matrix for this configuration

Mij =
{

1 if the ith andj th monomers are adjacent

0 otherwise.
(19)

Any |G〉 hasNd differentM-matrices. The first term in equation (18) was calculated
in the caseγ = 0, and we only need to calculate the last part. The aim of our calculation
is to find the ground state. In any compact configuration in a 3× 3× 3 cube, there are
28 non-sequential neighbour pairs. Thus, the contribution of the last term in energy is less
than 28γ . We have shown that energy spectrum for the previous case has a ladder structure
with energy gaps equal to 2. In this case these split into some sublevels (figure 7). Then if
we chooseγ < 2

28 the levels are separate. Of course this is a lower estimation forγc. In
the next section we will obtain a better estimate for lower and upper limits of the critical
value ofγ .

From the result of the additive potential we have a subsetG in the space of all the
spatial structures which gives the minimum energy to folding. ThisG subset hasNd
members which all of them have the same|G〉. For smallγ ’s the ground state and the
first excited state are between theseNd structures, and it is not necessary to calculate the
energy for all of 103 346 spatial structures for any sequence, except for sequences which
their ground state is in structures withNd = 1. For theNd = 1 structures, the value of
Ns does not change, and it is not necessary to run the program. The first excited state of
these sequences are in anotherG subset. Thus, to find the energy gap for them the program
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Figure 7. Energy levels of additive potential split to sublevels for non-additive potential.
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Figure 8. Histogram ofNs for non-additive potential.

must be run over all of the 103 346 structures. We have calculated this energy spectrum,
and have found the newNs for all 103 346 structures. We show the results for the 51 704
configuration which are unrelated by reverse labelling symmetry in figure 8. We have found
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Figure 9. The mean of energy gap versusNs . There is a jump in energy gap for highly
designable structures. All of these highly designable structures haveNd = 1.

the energy gap for first excited state for all sequences. Figure 9 shows the diagram of mean
of energy gap versusNs . This figure shows that highly designable structures which are
related toG subsets with one member.

In this enumeration we have calculated the energy spectrum for all of the sequences
which have non-degenerate ground state for the additive potential. We removed some of
the sequences because of the degeneracy of the ground state in the additive potential case.
It is possible that this degeneracy will be removed by the non-additive part of the potential,
and some of the sequences have a unique ground state for non-additive potential. However,
the energy gap for these sequences is of order ofγ , and if we consider them it causes a
shift in the horizontal axes to biggerNs and brings the points down nearer to theγ value
in vertical direction in figure 9. These make this figure more similar to results of Liet al
[10]. In their work the energy gap for low-designable structures are of order ofγ (they
choseγ = 0.3) also.

6. Estimation of γc

The energy levels for the additive potential have a ladder structure, as it had been proven
in previous sections. The energy gaps between the levels is 2 in our arbitrary energy unit.

In the case ofγ 6= 0 the energy has two parts (equation (18)). The first part comes
from the additive part of potential and does not change. The second part comes from the
non-additive part of potential, and is equal to the number of H–H non-sequential neighbours
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in spatial configuration. Because of this non-additive part, the energy spectrum is changed,
and a level is split into some sublevels (figure 7).

If the contribution of the second part to energy is less than 2, for all structures, the
ground state and excited state of any polymer is between|G〉 partners of its ground state
for additive potential, except for|G〉 with Nd = 1, where there is only ground state.

Let δe0 be the difference in the ground-state energies of additive and non-additive
potentials, andδe1 be difference energy of first excited state in the case ofγ = 0 with a
minimum of new energies for the sequence in the structures corresponding to these excited
states (there is no uniqueness constraint for excited states). Ifδe0 − δe1 < 2 the ground
state does not change and the values ofNs for structures that we presented in the previous
section do not change. By increasingγ , the absolute values ofδe0 andδe1 increase.

To find the difference betweenδe0 andδe1 one has to calculate the difference in H–H
contacts in ground-state structure and maximum of H–H contacts in excited level structures.

This difference has two sources. Because the energy levels in the caseγ = 0 are
separated by 2, then the difference between them comes from replacing a H monomer from
O site to anL site, or from anF site to aC site. Both of them cause the energy to increase
by 2. But it is possible that these replacing decrease the energy by 2γ . For example,
consider that oneF site with no H neighbour will go to oneC site with two non-sequential
H neighbours (this monomer must be an end residue), then this gives an upper limit forγc,
which is 1.

The other source for increasing the H–H contacts comes from replacing H monomers
in L and F sites by the same type sites. These changes are only relevant in the case
γ 6= 0. The maximum increase in H–H contacts due to this replacements is 6γ , related to
the sequences which have four H monomers in theF sites and five to seven inL sites in
their ground-state structures. We must add to this the most probable maximum of energy
decrease, corresponding to the change of site-type of one H monomer, which we have shown
to be equal to 2 (the first source). This gives the most probable change of energy due to
the non-additive part of the potential,(2+ 6)γ . Thus, the lower limit forγc is 2

2+6 = 0.25.
Therefore, we have:

0.25< γc < 1. (20)

However, this calculation is highly dependent on the geometry, but designability is a
geometry-dependent parameter itself [18]. Although we expectγc to be N dependent,
its form is still uncertain to us. The upper limit forγc comes from the odd–even problem in
the cubic lattice and isN independent, but the lower limit can depend onN . The existence
of a non-zero value forγc distinguishes two phases. Ifγ < γc, the degree of designability
of structures is independent ofγ , and the change in value ofγ only changes the energy
gaps. On the other hand, forγ > γc, the designability of structures becomes sensitive to the
value ofγ , and the patterns of highly designable structures will be changed if the potential
changes.

If the designability is the answer to the question ‘why has nature selected a small
fraction of possible configurations for folded states?’, then the above discussion shows that
this selection is potential independent ifγ < γc, and sensitive to inter monomers interactions
if γ > γc.

The fact that the ground-state configuration for a certain sequence does not depend on
the value ofγ for γ < γc, suggests that it can be used as a control parameter for energy
gap in Monte Carlo simulation. This shows that by using the additive potential one can
reduce the folding time of highly designable proteins in such simulations.
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